博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【转载】Discriminative Learning和Generative Learning
阅读量:6285 次
发布时间:2019-06-22

本文共 3709 字,大约阅读时间需要 12 分钟。

       Discriminative 学习算法是一类模型化输入(X)输出(Y)的关系的方法,简单来说就好比中医,我们只知道用若干个药(当归,虎骨。。。)可以凑成一个药方,就能治疗跌打病痛。但我们并不去了解内部的原因,我们将其看做一个黑盒,只需了解X和Y的关系,即model P(Y|X).学习的结果就是X的一组参数,好比当归2钱,虎骨1两。Discriminative Learning要求X的各个项是独立变化的。

       Generative学习算法不直接model P(Y|X),因为这可能非常复杂,例如model 在give 一个X=吸烟的人,Y得肺癌的几率。而是model P(X|Y),就好像在得肺癌的人里面看吸烟人的情况。我们都知道吸烟的人数亿亿计,但得肺癌的人逼近是少数,model 从得肺癌的人出发,更加容易,比如10万个得肺癌的,抽样1000个就差不多了。

       Generative的算法需要考察X的每个项的概率分布情况,即P(Y|{x1,x2,x3...xn}),需要考察P(x1|Y)...P(xn|Y)...

        一句话,直接model P(Y|X)的算法就是Discriminative Learning,model P(X|Y)和 P(Y)然后间接的model P(Y|X)的就是 Generative Learning。   

 

以下来自维基百科

Discriminative model

From Wikipedia, the free encyclopedia
 

Discriminative models are a class of models used in  for modeling the dependence of an unobserved variable y on an observed variable x. Within a statistical framework, this is done by modeling the  P(y | x), which can be used for predicting y from x.

Discriminative models differ from  in that they do not allow one to generate samples from the  of x and y. However, for tasks such as  and  that do not require the joint distribution, discriminative models generally yield superior performance. On the other hand, generative models are typically more flexible than discriminative models in expressing dependencies in complex learning tasks. In addition, most discriminative models are inherently  and cannot easily be extended to .

Examples of discriminative models used in machine learning include:

  • , a type of  used for predicting  or  outputs (also known as )

 

 

Generative model

 

From Wikipedia, the free encyclopedia
 

In  and , a generative model is a model for randomly generating observable data, typically given some hidden parameters. It specifies a  over observation and label sequences. Generative models are used in  for either modeling data directly (i.e., modeling observed draws from a ), or as an intermediate step to forming a. A conditional distribution can be formed from a generative model through the use of .

 (1948) gives an example in which a table of frequencies of English word pairs is used to generate a sentence beginning with "representing and speedily is an good"; which is not proper English but which will increasingly approximate it as the table is moved from word pairs to word triplets etc.

Generative models contrast with , in that a generative model is a full probabilistic model of all variables, whereas a discriminative model provides a model only for the target variable(s) conditional on the observed variables. Thus a generative model can be used, for example, to simulate (i.e. generate) values of any variable in the model, whereas a discriminative model allows only sampling of the target variables conditional on the observed quantities. On the other hand, despite the fact that discriminative models do not need to model the distribution of the observed variables, they cannot generally express more complex relationships between the observed and target variables. They don't necessarily perform better than generative models at  and  tasks.

Examples of generative models include:

  •  and other types of 

If the observed data are truly sampled from the generative model, then fitting the parameters of the generative model to  is a common method. However, since most statistical models are only approximations to the true distribution, if the model's application is to infer about a subset of variables conditional on known values of others, then it can be argued that the approximation makes more assumptions than are necessary to solve the problem at hand. In such cases, it is often more accurate to model the conditional density functions directly, using a  (see above).

转载于:https://www.cnblogs.com/daleloogn/p/4266507.html

你可能感兴趣的文章
Java 容器 & 泛型:三、HashSet,TreeSet 和 LinkedHashSet比较
查看>>
性能优化总结(六):预加载、聚合SQL应用实例
查看>>
http缓存知识
查看>>
Go 时间交并集小工具
查看>>
iOS 多线程总结
查看>>
webpack是如何实现前端模块化的
查看>>
TCP的三次握手四次挥手
查看>>
关于redis的几件小事(六)redis的持久化
查看>>
package.json
查看>>
webpack4+babel7+eslint+editorconfig+react-hot-loader 搭建react开发环境
查看>>
Maven 插件
查看>>
初探Angular6.x---进入用户编辑模块
查看>>
计算机基础知识复习
查看>>
【前端词典】实现 Canvas 下雪背景引发的性能思考
查看>>
大佬是怎么思考设计MySQL优化方案的?
查看>>
<三体> 给岁月以文明, 给时光以生命
查看>>
Android开发 - 掌握ConstraintLayout(九)分组(Group)
查看>>
springboot+logback日志异步数据库
查看>>
Typescript教程之函数
查看>>
Android 高效安全加载图片
查看>>